
Rapid Prototyping and Evaluation of 
Intelligence Functions of 
Active Storage Devices

Yongsoo Joo
Embedded Software Research Center

Ewha Womans University

This research was supported by Basic Science Research Program through NRF (2012-0003366)



Active Storage Device (ASD)

 Key idea
 Offload computation (data processing) to the storage device

 A more general definition
 Storage devices that actively perform “something” more than 

just handling the I/O requests that they receive
 Goal: to improve storage performance

 We call “something” intelligence functions

2



Intelligence Function (IF)

 Application-specific intelligence functions
 Query operations in database systems
 Data mining for multimedia applications
 Gene sequence matching in biological data

 Object storage devices (OSDs)
 Support various types of applications and IFs
 Object are managed by the storage device
 Cf.) conventional systems: object -> file -> LBA -> PBA

3



Requirement of OSDs

 A new, innovative I/O interface
 OSD SCSI T10 specification (implemented over iSCSI)

 OS kernel support
 Support for the OSD protocol added in Linux 2.6.30

 A new programming model for applications
 Stream based, RPC based, etc.

 Technically feasible, but facing difficulty in practice

4



Difficulties in Deployment

 Researchers: hard to set up an evaluation platform
 ASDs not available as commodity hardware
 Applications should be ASD-aware as well

 Manufacturers: need confidence before migration to ASDs
 Find good applications (with intelligence functions)
 Feedback from user experience

 Users: hard to gain user experiences
 Users have little way to experience ASD-based systems

5

Chicken-and-egg problem!



Alternative Way

 What about intelligence functions compatible with 
commodity systems?

 Some IFs can be implemented on a file system
 MVSS (multi-view storage systems), QuFiles, etc.

 Modern HDDs and SSDs have potential to be an ASD
 Lookahead read, data deduplication, etc.

 Less flexible, but immediately deployable

6



File-based Intelligence Functions

 Intelligence functions running at file level
 Multiple views of a file (e.g., a video clip at various resolutions)
 Context-aware adaptation

 How to evaluate?
 Implement a new file system from scratch
 Stackable file system (e.g., FUSE)

7



Block-based Intelligence Functions

 Intelligence functions running at block level
 Prefetching / hot data clustering / block replication
 Data pinning / NVRAM write cache / block deduplication

 How to evaluate?
 Block device simulation (e.g., disksim)
 Hack the OS block layer
 No tool like FUSE for block-based IFs

8



Proposed Evaluation Platform

 IOLab: A VM-based evaluation platform for ASDs
 The role of the VM

 Run target applications to generate input I/O requests
 Key Idea

 Intercept I/O requests between the VM and the host OS
 Implementation

 A userspace module running on the host OS

9



Structure of IOLab

10

Application

Host OS

I/O scheduler I/O scheduler I/O scheduler

Block cache
Device mapper

Target application

Block device
HDD

Master VDI file Partial VDI files
Flash cacheSSD

Device driver

File system File system File system
Block I/O layer

Device driver Device driver

Virtual file system

Page cache

IOLab

VMM



Structure of IOLab

11

VMM

I/O pattern analyzer

I/O dispatcher

I/O scheduler I/O scheduler I/O scheduler

IOLab

Block cache
Device mapper

Target app read() & write() calls

Virtual file system



Advantage of IOLab

 Easy prototyping of intelligence functions
 No customized hardware
 No need to hack the OS kernel

 Real-time execution
 IFs are running on real HDDs or SSDs
 Immediate benefit to VM users

 Extensibility
 Able to use any block device attachable to the host machine
 Easy to combine heterogeneous block devices

12



OS Boot Observation

13

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

Time (sec)

Time (sec)

(a) Windows XP (boot prefetch disabled)

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

! "! #! $! %!

!

&!!!!!!

"!!!!!!!

"&!!!!!!

Time (sec)(d) Linux Fedora 14 x64

! " # $ % "& #$ #%

!'!

"!'!

#!'!

(!'!

$!'!

)!'!

!*

#!*

$!*

&!*

%!*

"!!*

"#!*

+,,-.-/01

2/-.34-/,

! ) "! ") #! #) (! () $!

!

"!!!!!!!

#!!!!!!!

(c) Mac OS X 10.6

Optimized access pattern

(b) Windows XP (boot prefetch enabled)

Time (sec)

LBA

LBA

LBA

LBA

Windows XP

Windows XP 
(with boot prefetch)

Mac OS X

Linux Fedora



OS Boot Optimization (Windows XP)

14

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

! "! #! $! %! &!

"!!!!

"!!!!!!

"!!!!!!!!

Time (sec)

Time (sec)

(a) No prefetcher

(b) Windows prefetcher

Time (sec)
(c) IOLab prefetcher (sorting)

(d) IOLab prefetcher (CDP)

(e) Warm start

Time (sec)

Time (sec)

Built-in boot prefetcher

No prefetcher (baseline)

IOLab prefetcher  
(sorted by LBA)

IOLab prefetcher  
(keep the LBA order)

Warm start
(100% hit on the page cache of 

the host OS)



Hybrid Disk

 Rapid prototyping of a hybrid disk
 Combination of commodity block devices

 SSD+HDD hybrid disk
 SSD: Intel X25-V (40GB MLC)
 HDD: Fujitsu MHZ2120BH (120GB, 2.5”)

 Block mapping
 First 4GB mapped to the SSD
 The rest to the HDD

15



Hybrid HDD

 Measured throughput and latency
 HD Tune Pro (a HDD benchmarking tool running on Windows OS)

16

Th
ro

ug
hp

ut

A
cc

es
s 

la
te

nc
y

Block address space (for the left y-axis)
Distance btw. adjacent I/O requests (for the right y-axis)



Prototyping Effort

 Real implementation vs. IOLab
 Target IF: application prefetcher

17

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 2012 11

TABLE 1
Comparison of the prototyping effort between FAST [5] and IOLab prefetcher.

FAST IOLab prefetcher (Section 6.2)
Component LOC Note LOC Note
Application launch manager 538 410
System call profiler - use strace - not required
Disk I/O profiler - use blktrace - included in IOLab
Application launch sequence extractor 353 286
LBA-to-inode reverse mapper 5608 - not required
Application prefetcher generator 421 69
Total 6920 took 6 months to develop 765 took 1 week to develop

Disk I/O profiler

Application 
launch 

sequence
LBA-to-

inode map

Raw block 
request 

sequences

Application 
launch sequence 

extractor
LBA-to-inode 

reverse mapper

Application 
prefetcher 
generator

Target 
application

Application 
prefetcher

Application 
launch manager

System call 
profiler

Not required for 
the IOLab prefetcher

Fig. 7. The structure of FAST, a Linux implementation
of the application prefetcher [5].

the block-level to file-level conversion process of the
application launch sequence. Note that the LBA-to-
inode reverse mapping is essential to perform the
conversion process, but most file systems including
EXT3 of the Linux OS do not support it. Hence, we
had to develop one by ourselves, which was the most
time-consuming task, though intuitive.

6.5.2 Quantification of the prototyping effort
Table 1 compares the prototyping effort of FAST and
the IOLab prefetcher in terms of lines of code (LOC)
and developing time. As we do not have exact data
for developing time of each component, we presented
only the total time for development. The total LOC of
the IOLab prefetcher and its total development time
are 11% and 4% of FAST, respectively.

6.6 Performance Overhead
While the performance overhead of IOLab mostly
comes from the VM’s virtualization overhead,
IOLab itself can also affect the performance. We
performed the following experiments to estimate the
performance overhead of IOLab.

6.6.1 I/O interception
Since IOLab modifies a set of system calls to intercept
I/O requests from the VM, it may increase the latency
of these system calls. We chose the OS boot time to
capture the I/O performance degradation caused by

IOLab, because the accumulated delays of thousands
of read() calls from OS boot are likely to make the
measurement easier.
IOLab was set to its default configuration so that it

just passes the intercepted I/O requests from the VM
to the VDI file. For the experiment with IOLab dis-
abled, we cannot use the I/O trace logging function of
IOLab to measure the OS boot time. So, we modified
the host OS kernel to monitor the I/O requests from
the VM to the first and last block of the Windows XP
boot sequence. For the experiment with IOLab en-
abled, however, we monitored the OS boot time using
IOLab.

We measured the boot times of Windows XP on
the WD6400AAKS HDD with and without running
IOLab. We repeated each experiment five times. The
total amount of data transferred in the Windows
XP boot process was 93.4 MB, which accounts for
4103 read() and 57 write() calls. The average
OS boot times with and without IOLab were 41.6s
and 41.7s, respectively. The measured min-max boot
time difference was 1.0s without IOLab and 0.6s with
IOLab. In summary, the I/O interception overhead of
IOLab appears to be unmeasurable due to the boot
time variations.

6.6.2 Device mapper

The device mapper of IOLab lies on the critical path
of the I/O processing routine, directly affecting I/O
performance. We chose the SSD+HDD hybrid drive
in Section 6.4 to test the performance overhead of the
device mapper, since it makes extensive use of the
device mapper.

As the hybrid-drive case study of Section 6.4 used a
simple mapping, we were able to configure the same
hybrid drive using the logical volume manager (LVM)
of the Linux OS—the host OS of IOLab. We made
4 GB and 103 GB volumes on the X25-V SSD and
the MHZ2120BH HDD, respectively, and combined
them to create a 107 GB logical partition using the
LVM. We then copied the VM used in Section 6.4
to the logical partition to measure the boot time of
Windows XP. Finally, we used the same measurement
method described above. The measured OS boot time
on the logical partition was 34.61s, while that in

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 2012 11

TABLE 1
Comparison of the prototyping effort between FAST [5] and IOLab prefetcher.

FAST IOLab prefetcher (Section 6.2)
Component LOC Note LOC Note
Application launch manager 538 410
System call profiler - use strace - not required
Disk I/O profiler - use blktrace - included in IOLab
Application launch sequence extractor 353 286
LBA-to-inode reverse mapper 5608 - not required
Application prefetcher generator 421 69
Total 6920 took 6 months to develop 765 took 1 week to develop

Disk I/O profiler

Application 
launch 

sequence
LBA-to-

inode map

Raw block 
request 

sequences

Application 
launch sequence 

extractor
LBA-to-inode 

reverse mapper

Application 
prefetcher 
generator

Target 
application

Application 
prefetcher

Application 
launch manager

System call 
profiler

Not required for 
the IOLab prefetcher

Fig. 7. The structure of FAST, a Linux implementation
of the application prefetcher [5].

the block-level to file-level conversion process of the
application launch sequence. Note that the LBA-to-
inode reverse mapping is essential to perform the
conversion process, but most file systems including
EXT3 of the Linux OS do not support it. Hence, we
had to develop one by ourselves, which was the most
time-consuming task, though intuitive.

6.5.2 Quantification of the prototyping effort
Table 1 compares the prototyping effort of FAST and
the IOLab prefetcher in terms of lines of code (LOC)
and developing time. As we do not have exact data
for developing time of each component, we presented
only the total time for development. The total LOC of
the IOLab prefetcher and its total development time
are 11% and 4% of FAST, respectively.

6.6 Performance Overhead
While the performance overhead of IOLab mostly
comes from the VM’s virtualization overhead,
IOLab itself can also affect the performance. We
performed the following experiments to estimate the
performance overhead of IOLab.

6.6.1 I/O interception
Since IOLab modifies a set of system calls to intercept
I/O requests from the VM, it may increase the latency
of these system calls. We chose the OS boot time to
capture the I/O performance degradation caused by

IOLab, because the accumulated delays of thousands
of read() calls from OS boot are likely to make the
measurement easier.
IOLab was set to its default configuration so that it

just passes the intercepted I/O requests from the VM
to the VDI file. For the experiment with IOLab dis-
abled, we cannot use the I/O trace logging function of
IOLab to measure the OS boot time. So, we modified
the host OS kernel to monitor the I/O requests from
the VM to the first and last block of the Windows XP
boot sequence. For the experiment with IOLab en-
abled, however, we monitored the OS boot time using
IOLab.

We measured the boot times of Windows XP on
the WD6400AAKS HDD with and without running
IOLab. We repeated each experiment five times. The
total amount of data transferred in the Windows
XP boot process was 93.4 MB, which accounts for
4103 read() and 57 write() calls. The average
OS boot times with and without IOLab were 41.6s
and 41.7s, respectively. The measured min-max boot
time difference was 1.0s without IOLab and 0.6s with
IOLab. In summary, the I/O interception overhead of
IOLab appears to be unmeasurable due to the boot
time variations.

6.6.2 Device mapper

The device mapper of IOLab lies on the critical path
of the I/O processing routine, directly affecting I/O
performance. We chose the SSD+HDD hybrid drive
in Section 6.4 to test the performance overhead of the
device mapper, since it makes extensive use of the
device mapper.

As the hybrid-drive case study of Section 6.4 used a
simple mapping, we were able to configure the same
hybrid drive using the logical volume manager (LVM)
of the Linux OS—the host OS of IOLab. We made
4 GB and 103 GB volumes on the X25-V SSD and
the MHZ2120BH HDD, respectively, and combined
them to create a 107 GB logical partition using the
LVM. We then copied the VM used in Section 6.4
to the logical partition to measure the boot time of
Windows XP. Finally, we used the same measurement
method described above. The measured OS boot time
on the logical partition was 34.61s, while that in



Summary

18

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, X 2012 12

TABLE 2
Comparison of IOLab with representative evaluation methods.

Support of target Performance Real-time Developing
Evaluation method intelligence functions accuracy execution time
Real implementation [20], [53] not limited baseline support very high
Full system simulation [54] not limited high not support high
Device emulation [55] block-level high partially support moderate
Device simulation [45], [46] block-level low not support moderate
File system extension [56], [57] file-level moderate support very low
IOLab block-level moderate support very low

Section 6.4 was 34.60s, showing that the overhead of
the IOLab device mapper is similar to that of LVM.

7 RELATED WORK

Over recent years, significant efforts have been made
to develop an efficient evaluation method for storage
system research. Table 2 summarizes representative
evaluation methods with their advantages as well as
limitations in comparison with IOLab. Each method
is discussed in detail below.

Real implementation. Prototyping intelligence func-
tions on a real system [20], [53] enables a thor-
ough investigation of various implementation issues
and their accurate evaluation. However, real system
implementations require significant time and effort,
thus impeding prompt evaluation of new intelligence
functions. Also, the thus-developed prototypes are
often not suitable for wide distribution because they
are tightly coupled with a customized OS and a file
system, or even require custom hardware.

Device simulation. Storage device simulators [45],
[46] have a great deal of flexibility in modeling the in-
ternal structure of an active storage device. However,
they mostly support only trace-driven simulation,
lacking the ability of interacting with real applica-
tions. Also, they are unable to account for the data
transfer delay between main memory and a storage
device, yielding inaccurate evaluation of intelligence
functions.

Full system simulation. Full-system simulators [54]
can execute real applications with a real OS because
they model most major components of a computer
system in enough detail. They can also simulate I/O
connect delays, enabling accurate evaluation of intelli-
gence functions. However, setting up a new target in-
telligence function on a full-system simulator requires
substantial time and effort, which is often comparable
to that of real system implementation. Also, full-
system simulators are not suitable for getting user
experience from daily workloads because they do not
support real-time execution.

Device emulation. The device emulation approach
can overcome the limitations of the trace-driven de-
vice simulators discussed above. For example, MEM-

ULATOR [55] extends Disksim [45] to perform timing-
accurate emulation of its disk model. MEMULATOR
uses a part of main memory as its RAM cache to
perform actual data load/store operations. For timing
emulation, it inserts an artificial delay before the
completion of each I/O request according to the I/O
latency calculated by Disksim. This approach allows
interaction with real applications as well as real-
time execution of intelligence functions. However, this
approach is not perfect for the purpose of distributing
intelligence functions to users because (1) the data
stored in the RAM cache can be lost by sudden power
loss; and (2) it cannot maintain real-time execution if
the working set size is larger than the RAM cache size,
while IOLab does not have such a limitation.

File system extension. There have been continuous
efforts to facilitate exploring new experimental file
systems, such as FUSE (Filesystem in USErspace) [56]
and FiST (File System Translator) [57]. FUSE is a
userspace file system framework that provides an
interface between an OS kernel and an experimental
file system running in user space. FiST is a file system
generation tool to create a new file system from a
standard file system template and new functionali-
ties described using its own template language. Both
FUSE and FiST enable rapid development and evalua-
tion of a new experimental file system with much less
prototyping effort than developing one from scratch.
These tools can also be used to evaluate a specific type
of intelligence functions exploiting file-level semantics
[11], [30], [31]. However, IOLab is differentiated from
the file system extension tools in that it focuses on
supporting intelligence functions using block-level
information as discussed in Section 4.

8 CONCLUSION

In this paper, we revisited the definition of active
storage devices in accordance with their evolution,
and introduced IOLab, a VM-based platform for the
evaluation of intelligence functions of active storage
devices. We demonstrated the usefulness and capa-
bility of IOLab via a set of case studies that are
difficult to prototype in real systems in spite of their
obvious benefits. In particular, we have shown that
IOLab (1) can evaluate the same intelligence function
on different OSes without any modification; (2) can

 IOLab supports rapid prototyping of block-based intelligence 
functions

 Once a new IF is confirmed to be effective on IOLab, we 
can move to the next step without much risk

Comparison with other prototyping methods



19

Q&A


